A coherent feedforward loop design principle to sustain robustness of biological networks
نویسندگان
چکیده
MOTIVATION Many studies have investigated the relationship between structural properties and dynamic behaviors in biological networks. In particular, feedback loop (FBL) and feedforward loop (FFL) structures have received a great deal of attention. One interesting and common property of FBL and FFL structures is their coherency of coupling. However, the role of coherent FFLs in relation to network robustness is not fully known, whereas that of coherent FBLs has been well established. RESULTS To establish that coherent FFLs are abundant in biological networks, we examined gene regulatory and signaling networks and found that FFLs are ubiquitous, and are in a coherently coupled form. This result was also observed in the species-based signaling networks that are integrated from KEGG database. By using a random Boolean network model, we demonstrated that these coherent FFLs can improve network robustness against update-rule perturbations. In particular, we found that coherent FFLs increase robustness because these structures induce downstream nodes to be robust against update-rule perturbations. Therefore, coherent FFLs can be considered as a design principle of human signaling networks that improve network robustness against update-rule perturbations.
منابع مشابه
Design of An Integrated Robust Optimization Model for Closed-Loop Supply Chain and supplier and remanufacturing subcontractor selection
The development of optimization and mathematical models for closed loop supply chain (CLSC) design has attracted considerable interest over the past decades. However, the uncertainties that are inherent in the network design are challenging the capabilities of the developed tools. In CLSC Uncertainty in demand is major source of uncertainty. The aim of this paper, therefore, is to present a Rob...
متن کاملCoherent coupling of feedback loops: a design principle of cell signaling networks
MOTIVATION It is widely accepted that cell signaling networks have been evolved to be robust against perturbations. To investigate the topological characteristics resulting in such robustness, we have examined large-scale signaling networks and found that a number of feedback loops are present mostly in coupled structures. In particular, the coupling was made in a coherent way implying that sam...
متن کاملThe coherent feedforward loop serves as a sign-sensitive delay element in transcription networks.
Recent analysis of the structure of transcription regulation networks revealed several "network motifs": regulatory circuit patterns that occur much more frequently than in randomized networks. It is important to understand whether these network motifs have specific functions. One of the most significant network motifs is the coherent feedforward loop, in which transcription factor X regulates ...
متن کاملNetDS: a Cytoscape plugin to analyze the robustness of dynamics and feedforward/feedback loop structures of biological networks
SUMMARY NetDS is a novel Cytoscape plugin that conveniently simulates dynamics related to robustness, and examines structural properties with respect to feedforward/feedback loops. It can evaluate how robustly a network sustains a stable state against mutations by employing a Boolean network model. In addition, the plugin can examine all feedforward/feedback loops appearing in a network and det...
متن کاملCircuit Designing Robustness to Temperature in a Feedforward Loop
— 'Incoherent feedforward loops' represent important biomolecular circuit elements capable of a rich set of dynamic behavior including adaptation and pulsed responses. Temperature can modulate some of these properties through its effect on the underlying reaction rate parameters. It is generally unclear how to design such a circuit where the properties are robust to variations in temperature. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 29 5 شماره
صفحات -
تاریخ انتشار 2013